Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.304
Filtrar
1.
Biomed Microdevices ; 26(2): 21, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558326

RESUMO

Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Dengue , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Ouro/química , Prata/química , Técnicas Biossensoriais/métodos , Eletrodos , Dengue/diagnóstico , Limite de Detecção
2.
Int J Nanomedicine ; 19: 2995-3007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559446

RESUMO

Background: In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods: ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results: ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 µg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 µg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion: ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Otite Média , Infecções Estafilocócicas , Óxido de Zinco , Humanos , Staphylococcus aureus , Radical Hidroxila , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Otite Média/tratamento farmacológico , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
3.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Sci Rep ; 14(1): 7715, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565575

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) have found wide applications in medical and industrial fields. However, the toxic effect of various tissues is still under study. In this study, we evaluated the toxic effect of TiO2-NP on stomach, liver, and kidney tissues and the amelioration effect of clove oil nanoemulsion (CLV-NE) against DNA damage, oxidative stress, pathological changes, and the apoptotic effect of TiO2-NPs. Four groups of male mice were subjected to oral treatment for five consecutive days including, the control group, the group treated with TiO2-NPs (50 mg/kg), the group treated with (CLV-NE) (5% of the MTD), and the group treated with TiO2-NPs plus CLV-NE. The results revealed that the treatment with TiO2-NPs significantly caused DNA damage in the liver, stomach, and kidney tissues due to increased ROS as indicated by the reduction of the antioxidant activity of SOD and Gpx and increased MDA level. Further, abnormal histological signs and apoptotic effect confirmed by the significant elevation of p53 expression were reported after TiO2-NPs administration. The present data reported a significant improvement in the previous parameters after treatment with CLV-NE. These results showed the collaborative effect of the oils and the extra role of nanoemulsion in enhancing antioxidant effectiveness that enhances its disperse-ability and further promotes its controlled release. One could conclude that CLV-NE is safe and can be used as a powerful antioxidative agent to assess the toxic effects of the acute use of TiO2-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Camundongos , Masculino , Animais , Óleo de Cravo/toxicidade , Nanopartículas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Titânio/toxicidade , Dano ao DNA
5.
Eur Radiol Exp ; 8(1): 40, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565836

RESUMO

BACKGROUND: To assess the feasibility and tissue response of using a gold nanoparticle (AuNP)-integrated silicone-covered self-expandable metal stent (SEMS) for local hyperthermia in a rat esophageal model. METHODS: The study involved 42 Sprague-Dawley rats. Initially, 6 animals were subjected to near-infrared (NIR) laser irradiation (power output from 0.2 to 2.4 W) to assess the in vitro heating characteristics of the AuNP-integrated SEMS immediately after its placement. The surface temperature of the stented esophagus was then measured using an infrared thermal camera before euthanizing the animals. Subsequently, the remaining 36 animals were randomly divided into 4 groups of 9 each. Groups A and B received AuNP-integrated SEMS, while groups C and D received conventional SEMS. On day 14, groups A and C underwent NIR laser irradiation at a power output of 1.6 W for 2 min. By days 15 (3 animals per group) or 28 (6 animals per group), all groups were euthanized for gross, histological, and immunohistochemical analysis. RESULTS: Under NIR laser irradiation, the surface temperature of the stented esophagus quickly increased to a steady-state level. The surface temperature of the stented esophagus increased proportionally with power outputs, being 47.3 ± 1.4 °C (mean ± standard deviation) at 1.6 W. Only group A attained full circumferential heating through all layers, from the epithelium to the muscularis propria, demonstrating marked apoptosis in these layers without noticeable necroptosis. CONCLUSIONS: Local hyperthermia using the AuNP-integrated silicone-covered SEMS was feasible and induced cell death through apoptosis in a rat esophageal model. RELEVANCE STATEMENT: A gold nanoparticle-integrated silicone-covered self-expanding metal stent has been developed to mediate local hyperthermia. This approach holds potential for irreversibly damaging cancer cells, improving the sensitivity of cancer cells to therapies, and triggering systemic anticancer immune responses. KEY POINTS: • A gold nanoparticle-integrated silicone-covered self-expanding metal stent was placed in the rat esophagus. • Upon near-infrared laser irradiation, this stent quickly increased the temperature of the stented esophagus. • Local hyperthermia using this stent was feasible and resulted in cell death through apoptosis.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Ratos , Animais , Ouro , Silicones , Estudos de Viabilidade , Ratos Sprague-Dawley , Esôfago , Stents
6.
Mol Biol Rep ; 51(1): 501, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598057

RESUMO

BACKGROUND: Dendrocalamus strictus (Roxb.) Nees, generally referred to as 'Male bamboo,' is a globally prevalent and highly significant species of bamboo. It is a versatile species and possesses notable industrial significance. However, despite its numerous applications, the production of this plant is insufficient to fulfill the worldwide demand. The challenges that impede the dissemination of D. strictus encompass the unpredictable blooming pattern (30-70 years), low seed production, and limited seed viability. Therefore, tissue culture presents a reliable and effective option for the mass production of standardized planting material. METHODOLOGY AND RESULTS: This study investigated the effects of silver nanoparticles (AgNPs) at a concentration of 6.0 mg L- 1 in the Murashige and Skoog (MS) nutrient medium fortified with pre-optimized plant growth regulators (3.0 mg L- 1 6-benzylaminopurine + 0.5 mg L- 1 α-naphthalene acetic acid) on the induction of flowering in a controlled environment in D. strictus. The use of AgNPs in the media induced a maximum of 14 inflorescences per culture vessel, 9 flowers per inflorescence, and improved the performance of the micropropagated plantlets during acclimatization in the greenhouse and field. The ISSR and SCoT amplified polymorphic DNA analysis of the regenerants resulted in the formation of 49 bands (300 to 2000 bp size) and 36 scorable bands (350 to 2000 bp) respectively. All the PCR amplicons produced by SCoT and ISSR were monomorphic confirming the genetic uniformity of the tissue cultured plants of D. strictus with the mother plant. CONCLUSIONS: It can be inferred that the incorporation of AgNPs during the shoot proliferation phase has the potential to stimulate in vitro flowering in D. strictus. This finding could provide valuable insights into innovative strategies for enhancing crop productivity and genetic manipulation for accelerated breeding and agricultural advancement.


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Melhoramento Vegetal , Biomarcadores , Aclimatação
7.
World J Microbiol Biotechnol ; 40(5): 158, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592601

RESUMO

Candida species is the causative agent in approximately 80% of invasive mycoses and drug-resistant Candida albicans is among the four strains of 'critical priority group' framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of Roccella montagnei. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging 'microbial resistance.' Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of R. montagnei to develop a potent anticandidal agent against Fluconazole-resistant C. albicans NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420-440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10-50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of - 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC50) of ≤ 15 µg. C. albicans culture treated with Rm-AgNPs at concentrations below IC50, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.


Assuntos
Ascomicetos , Candida albicans , Nanopartículas Metálicas , Animais , Camundongos , Fluconazol/farmacologia , Prata/farmacologia , Candida
8.
Sci Rep ; 14(1): 8045, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580674

RESUMO

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Fibra de Algodão , Ácido Succínico , Nanopartículas Metálicas/química , Têxteis , Antibacterianos/farmacologia , Antibacterianos/química
9.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582926

RESUMO

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Citrus/química , Escherichia coli/metabolismo , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Citrus sinensis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
10.
Int J Nanomedicine ; 19: 3167-3186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585473

RESUMO

Introduction: Due to its distinct advantage of non-invasive application in treatment, photothermal therapy (PTT) is being studied by many researchers to reduce the need for surgical incisions. It is characterized by the injection of nanoparticles into biological tissue as photothermal agents (PTAs) which diffuse within the tissue. In this study, the diffusion behavior of various doses of gold nanoparticles (AuNPs) injected into tumor tissues is analyzed and the effectiveness of PTT at each elapsed time after injection is confirmed by numerical analysis. Methods: The diffusion behavior of AuNPs within biological tissues is assessed using the convection-diffusion equation, while the temperature distribution is determined using the Pennes bioheat transfer equation. In addition, the effect of the diffusion behavior of AuNPs on the effectiveness of PTT is quantitatively confirmed by analyzing the temperature distribution in the medium through the apoptotic variable. Numerical simulation parameters are selected with doses ranging from 100 to 400 µg/mL, elapsed time after injection from 1 min to 24 h, and laser power ranging from 0 to 1 W. Results: After evaluating PTT's efficacy in every situation, it was discovered that a dosage of 100-300 µg/mL produced the best therapeutic result, with the highest impact occurring 12 hours after injection. In contrast, when the dosage was 400 µg/mL, the highest therapeutic effect was achieved after 18 hours post-injection. Additionally, it was discovered that the ideal laser power at each injection dose was 0.22, 0.14, 0.12, and 0.12 W, respectively. Conclusion: The conditions required to achieve the optimal treatment effect at each dosage, presented here, are expected to accelerate the commercialization of PTT.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Fototerapia , Ouro , Terapia Fototérmica , Linhagem Celular Tumoral
11.
Nano Lett ; 24(14): 4233-4240, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557069

RESUMO

This study represents the synthesis of a novel class of nanoparticles denoted as annular Au nanotrenches (AANTs). AANTs are engineered to possess embedded, narrow circular nanogaps with dimensions of approximately 1 nm, facilitating near-field focusing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via a surface-enhanced Raman scattering (SERS)-based immunoassay. Notably, AANTs exhibited an exceedingly low limit of detection (LOD) of 1 fg/mL for SARS-CoV-2 spike glycoproteins, surpassing the commercially available enzyme-linked immunosorbent assay (ELISA) by 6 orders of magnitude (1 ng/mL from ELISA). To assess the real-world applicability, a study was conducted on 50 clinical samples using an SERS-based immunoassay with AANTs. The results revealed a sensitivity of 96% and a selectivity of 100%, demonstrating the significantly enhanced sensing capabilities of the proposed approach in comparison to ELISA and commercial lateral flow assay kits.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro , COVID-19/diagnóstico , Imunoensaio/métodos , Análise Espectral Raman/métodos
12.
J Nanobiotechnology ; 22(1): 157, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589904

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Ácidos Graxos Voláteis , Anti-Inflamatórios/farmacologia
13.
Anal Chem ; 96(14): 5446-5454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556805

RESUMO

In this study, a novel integrated photoelectrochemical (PEC) sensor platform was proposed, utilizing an optical fiber (OF) as the working electrode for guided in situ light. A CdS quantum dots (QDs)/ZnO nanosheets (NSs) n-n heterojunction was quickly and easily constructed on the OF surface by successive ionic layer adsorption and reaction (SILAR). Au nanoparticles (NPs)@dsDNA as a capturing probe were modified on the CdS QDs/ZnO NSs@OF (CZ@OF). Due to the energy transfer between Au NPs@dsDNA and CdS QDs, the resultant opto-electrode has a lower background near zero, enabling the "signal-on" detection of biomarkers (interleukin-6 (IL-6) as a model). The OF-PEC biosensor demonstrated a wide linear range from 1 to 100 pg mL-1 with a regression coefficient (R2) of 0.9958 and an impressive detection limit (LOD) of 0.19 pg mL-1. More significantly, the proposed OF-PEC can be successfully used for the detection of IL-6 in serum samples from patients with pulmonary arterial hypertension, and it showed consistency and is more sensitive to trace concentrations compared to BD FACSCanto II flow cytometry used at the hospital. This holds significance for an early disease diagnosis. Therefore, the proposed OF-PEC not only achieves integration of the light source and sensing interface but also enables sensitive and accurate "signal-on" detection of IL-6. Furthermore, due to the flexibility and remote detection capabilities of OF, the application of OF-PEC is expected to be expanded more widely. This approach opens up possibilities for advances in PEC sensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Pontos Quânticos , Óxido de Zinco , Humanos , Técnicas Eletroquímicas , Citocinas , Interleucina-6 , Ouro , Adsorção , Fibras Ópticas , Eletrodos , Limite de Detecção
14.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642138

RESUMO

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Assuntos
Compostos Férricos , Nanopartículas Metálicas , Satureja , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Satureja/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia
15.
ACS Appl Bio Mater ; 7(4): 2254-2263, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568747

RESUMO

Diabetes is a major global health concern, with millions of annual deaths. Monitoring glucose levels is vital for clinical management, and urine samples offer a noninvasive alternative to blood samples. Optical techniques for urine glucose sensing have gained notable traction due to their cost-effectiveness and portability. Among these methods, surface-enhanced Raman spectroscopy (SERS) has attracted considerable attention thanks to its remarkable sensitivity and multiplexing capabilities. However, challenges remain in achieving reliable quantification through SERS. In this study, an alternative approach is proposed to enhance quantification involving the use of dual probes. Each probe is encoded with unique SERS signatures strategically positioned in the biologically silent region. One probe indicates the glucose presence, while the other acts as an internal reference for calibration. This setup enables ratiometric analysis of the SERS signal, directly correlating it with the glucose concentration. The fabrication of the sensor relies on the prefunctionalization of Fe sheets using an aryl diazonium salt bearing a -C≡CH group (internal reference), followed by the immobilization of Ag nanoparticles modified with an aryl diazonium salt bearing a -B(OH)2 group (for glucose capture). A secondary probe bearing a -B(OH)2 group on one side and a -C≡N group on the other side enables the ratiometric analysis by forming a sandwich-like structure in the presence of glucose (glucose indicator). Validation studies in aqueous solutions and artificial urine demonstrated the high spectral stability and the potential of this dual-probe nanosensor for sensitive glucose monitoring in clinical settings.


Assuntos
Glucose , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Automonitorização da Glicemia , Glicemia , Limite de Detecção , Prata/química
16.
Mikrochim Acta ; 191(5): 259, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605266

RESUMO

A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is  0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nitritos , Elementos de Transição , Humanos , Ouro/química , Nanopartículas Metálicas/química , Hidrogéis , Titânio/química , DNA/química
17.
Biosens Bioelectron ; 255: 116265, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569251

RESUMO

Immunosensors capable of ultralow-concentration and single-molecule detection of biomarkers are garnering attention for the early diagnosis of cancer. Herein, a fiber-optic Fabry-Perot interferometer (FPI)-based immunosensor was used for the first time for single-molecule detection of progastrin-releasing peptide (ProGRP). The cascaded FPI structure of the immunosensor introduces a high-order harmonic Vernier effect (HVE). A piece of a side-polished D-shaped hollow-core photonic crystal fiber (HCPCF) was used as a sensing FPI, on which the biomarker was deposited to detect ProGRP. Compared with traditional FPIs with open-cavity structures, this structure provided a larger contact area and improved the sensitivity of the immunosensor. The polished side surface of the D-shaped HCPCF was modified using a gold nanoparticle-graphene oxide (AuNP@GO) nanointerface to enhance refractive index (RI) modulation via antigen-antibody binding and achieve selective energy enhancement of the binding site. The antigen binding changes the RI of the D-shaped HCPCF and the effective RI of the transmitted light in the sensing FPI, thereby changing the spectrum of the immunosensor. Experimental results showed that the high-order HVE and AuNP@GO nanointerface considerably improved the immunosensor sensitivity, exhibiting a liquid RI sensitivity of 583,000 nm/RIU. After functionalization with an anti-ProGRP antibody, the limit of detection of the immunosensor for ProGRP reached 17.1 ag/mL; moreover, the immunosensor could perform detection at the single-molecule level. The proposed novel immunosensor overcomes the sensitivity limitations of optical devices and achieves single-molecule detection of a protein.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Imunoensaio , Biomarcadores
18.
Biosens Bioelectron ; 255: 116269, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579624

RESUMO

Saxitoxin (STX), which is produced by certain dinoflagellate species, is a type of paralytic shellfish poisoning toxin that poses a serious threat to human health and the environment. Therefore, developing a technology for the convenient and cost-effective detection of STX is imperative. In this study, we developed an affinity peptide-imprinted polymer-based indirect competitive ELISA (ic-ELISA) without using enzyme-toxin conjugates. AuNP/Co3O4@Mg/Al cLDH was synthesized by calcining AuNP/ZIF-67@Mg/Al LDH, which was obtained by combining AuNPs, ZIF-67, and flower-like Mg/Al LDH. This synthesized nanozyme exhibited high catalytic activity (Km = 0.24 mM for TMB and 132.5 mM for H2O2). The affinity peptide-imprinted polymer (MIP) was imprinted with an STX-specific template peptide (STX MIP) on a multi-well microplate and then reacted with an STX-specific signal peptide (STX SP). The interaction between the STX SP and MIP was detected using a streptavidin-coated nanozyme (SA-AuNP/Co3O4@Mg/Al cLDH). The developed MIP-based ic-ELISA exhibited excellent selectivity and sensitivity, with a limit of detection of 3.17 ng/mL (equivalent: 0.317 µg/g). Furthermore, the system was validated using a commercial ELISA kit and mussel tissue samples, and it demonstrated a high STX recovery with a low coefficient of variation. These results imply that the developed ic-ELISA can be used to detect STX in real samples.


Assuntos
Técnicas Biossensoriais , Cobalto , Nanopartículas Metálicas , Óxidos , Humanos , Toxinas Marinhas/análise , Polímeros Molecularmente Impressos , Ouro , Peróxido de Hidrogênio , Frutos do Mar/análise , Saxitoxina , Ensaio de Imunoadsorção Enzimática/métodos , Peptídeos , Polímeros
19.
Biosens Bioelectron ; 255: 116235, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579623

RESUMO

Multiplexed immunodetection, which achieves qualitative and quantitative outcomes for multiple targets in a single-run process, provides more sufficient results to guarantee food safety. Especially, lateral flow immunoassay (LFIA), with the ability to offer multiple test lines for analytes and one control line for verification, is a forceful candidate in multiplexed immunodetection. Nevertheless, given that single-signal mode is incredibly vulnerable to interference, further efforts should be engrossed on the combination of multiplexed immunodetection and multiple signals. Photothermal signal has sparked significant excitement in designing immunosensors. In this work, by optimizing and comparing the amount of gold, CuS@Au heterojunctions (CuS@Au HJ) were synthesized. The dual-plasmonic metal-semiconductor hybrid heterojunction exhibits a synergistic photothermal performance by increasing light absorption and encouraging interfacial electron transfer. Meanwhile, the colorimetric property is synergistic enhanced, which is conducive to reduce the consumption of antibodies and then improve assay sensitivity. Therefore, CuS@Au HJ are suitable to be constructed in a dual signal and multiplexed LFIA (DSM-LFIA). T-2 toxin and deoxynivalenol (DON) were used as model targets for the simulated multiplex immunoassay. In contrast to colloidal gold-based immunoassay, the built-in sensor has increased sensitivity by ≈ 4.42 times (colorimetric mode) and ≈17.79 times (photothermal mode) for DON detection and by ≈ 1.75 times (colorimetric mode) and ≈13.09 times (photothermal mode) for T-2 detection. As a proof-of-concept application, this work provides a reference to the design of DSM-LFIA for food safety detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , Imunoensaio , Metais
20.
Anal Chem ; 96(15): 6065-6071, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569047

RESUMO

The conventional lateral flow immunoassay (LFIA) method using colloidal gold nanoparticles (Au NPs) as labeling agents faces two inherent limitations, including restricted sensitivity and poor quantitative capability, which impede early viral infection detection. Herein, we designed and synthesized CsPbBr3 perovskite quantum dot-based composite nanoparticles, CsPbBr3@SiO2@Fe3O4 (CSF), which integrated fluorescence detection and magnetic enrichment properties into LFIA technology and achieved rapid, sensitive, and convenient quantitative detection of the SARS-CoV-2 virus N protein. In this study, CsPbBr3 served as a high-quantum-yield fluorescent signaling probe, while SiO2 significantly enhanced the stability and biomodifiability of CsPbBr3. Importantly, the SiO2 shell shows relatively low absorption or scattering toward fluorescence, maintaining a quantum yield of up to 74.4% in CsPbBr3@SiO2. Assembly of Fe3O4 nanoparticles mediated by PEI further enhanced the method's sensitivity and reduced matrix interference through magnetic enrichment. Consequently, the method achieved a fluorescent detection range of 1 × 102 to 5 × 106 pg·mL-1 after magnetic enrichment, with a limit of detection (LOD) of 58.8 pg·mL-1, representing a 13.3-fold improvement compared to nonenriched samples (7.58 × 102 pg·mL-1) and a 2-orders-of-magnitude improvement over commercial colloidal gold kits. Furthermore, the method exhibited 80% positive and 100% negative detection rates in clinical samples. This approach holds promise for on-site diagnosis, home-based quantitative tests, and disease procession evaluation.


Assuntos
Nanopartículas Metálicas , Dióxido de Silício , Ouro , Corantes Fluorescentes , Imunoensaio/métodos , Coloide de Ouro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...